

Manual de Instalação e Manutenção de Motores Elétricos Trifásicos Marathon

MOTOR IP23/ODP

MOTOR IP55/TFVE

MOTOR
IP55/TFVE MOTOFREIO

MOTOR

IP55/ TFVE JM

ATENCÃO

Recomendamos a leitura deste manual de instruções antes da instalação e operação de seu motor elétrico.

Recomendamos que a instalação seja feita por técnicos aptos conforme NBR-5410 (instalações elétricas de baixa tensão). Motores elétricos instalados ou operados de forma inadequada podem causar danos fatais.

INFORMAÇÕES GERAIS

Este manual refere-se a motores elétricos de indução trifásicos, fornecidos em carcaças de ferro fundido, providos com rolamentos de esferas ou de rolos e lubrificados com graxa.

NOTA GERAL

O objetivo deste manual é informar aos operadores os requisitos necessários para a instalação, manutenção e verificação dos motores **Marathon**.

As seguintes instruções e procedimentos representam as práticas necessárias que possibilitam a instalação e operação dos motores **Marathon**. Estas instruções não abrangem todas as situações que talvez possam ocorrer no ambiente de trabalho. Situações excepcionais devem ser reportadas à **Regal Beloit do Brasil** para obtenção de maiores informações.

A instalação, operação ou manutenção deverão ser realizadas por profissionais qualificados em equipamentos elétricos que deverão possuir conhecimentos atualizados sobre as normas de segurança.

MANUSEIO E TRANSPORTE

O transporte e manuseio devem ser realizados com o uso de equipamentos apropriados.

O gancho olhal é projetado para suportar apenas o peso do próprio motor e está localizado na parte superior do motor. Quando um levantamento envolver o motor em conjunto com o equipamento a ser acionado, recursos adicionais devem ser empregados para suportar esta condição.

Para motores com dois olhais, uma barra de afastamento é necessária para evitar o uso inadequado dos olhais. Motores equipados com abafadores/sistema de ventilação forçada eventualmente são fornecidos com ganchos olhais adicionais localizados um em cada canto do abafador/sistema de ventilação forçada. Estes ganchos olhais são para facilitar a remoção do abafador/sistema de ventilação forçada e não devem ser usados para levantar o motor.

RECEBIMENTO E ACEITAÇÃO

Ao receber o motor elétrico **Marathon**, verificar se o produto corresponde ao especificado no pedido.

Os motores devem ser sempre içados através dos olhais de suspensão (caso sejam providos). O eixo deve girar facilmente com a mão.

O motor deve ser inspecionado visualmente quanto a possíveis danos provenientes do transporte. Caso seja constatada qualquer anormalidade, fazer observação no conhecimento da transportadora e imediatamente comunicar a **Regal Beloit do Brasil** ou o seu representante.

REGAL

ARMAZENAMENTO

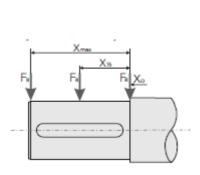
O ambiente destinado à armazenagem de motores **Marathon** deve estar isento de umidade, gases, fungos, agentes corrosivos, poeira, carvão, óleo ou partículas abrasivas, assim como não deve ser tolerada a presença de roedores ou insetos. Os almoxarifados não devem estar próximos de máquinas que originem excessivas vibrações. Os motores que não forem imediatamente instalados ou que forem armazenados por um período prolongado, poderão sofrer oxidação nos rolamentos, pois o peso do conjunto do rotor tende a romper o filme de óleo entre os corpos rolantes e as pistas do rolamento, ocasionando contato entre os mesmos, desgaste prematuro e corrosão. Para evitar, periodicamente girar o eixo manualmente. Se o motor possuir resistência de aquecimento, esta, preferencialmente, deverá ser energizada. Motores armazenados há mais de seis meses ou sujeitos à ambientes com alto índice de umidade devem ter sua resistência de isolamento medida antes da entrada em operação.

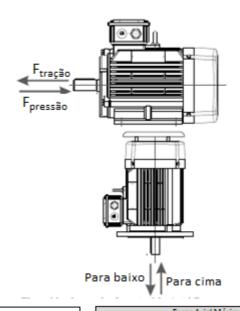
INSTALAÇÃO

<u>Localização</u> – A área em que o motor irá operar deve ser limpa e livre de poeira ou sujeira de qualquer natureza. O local da instalação deverá ter condições de renovação do ar, proporcionando uma ventilação adequada ao motor. Cuidados devem ser tomados para que as entradas de ar e os pontos de exaustão figuem livres de obstruções.

<u>Fundações</u> – A base onde o motor será fixado deve ser plana e isenta de vibrações, ou seja, de concreto ou metálica. A base deverá ser dimensionada para atender os esforços de torque do motor. O motor deve estar rigidamente fixado à base.

<u>Montagem</u> – O motor deve ser fixado ao equipamento fazendo uso de todos os pontos de fixação fornecidos, através de parafusos e ferramental adequados para este fim. O dispositivo trava eixo, caso exista, deverá ser removido antes da instalação do motor.


<u>Alinhamento</u> – O motor deve estar perfeitamente alinhado com a máquina acionada, especialmente nos casos de acoplamento direto. Um alinhamento incorreto pode causar danos aos rolamentos e vibrações e danos ao motor. Em caso de dúvidas consultar a **Regal Beloit do Brasil**.


<u>Aspectos Elétricos</u> – A alimentação de energia elétrica deve ser adequada a corrente nominal do motor. O motor deve ser aterrado usando-se um condutor apropriado com um terminal soldado e unido ao parafuso de aterramento do motor. Os parafusos de montagem do motor não devem ser empregados para a finalidade de instalação do terra.

CARGAS RADIAIS E AXIAIS MÁXIMAS, PARA MOTORES TFVE IP55, EM 50 E/OU 60Hz

Força	Radial Ma	áxima - Rola	mento de Es	
Carcaça	Poles	Χe	X _{1/2}	X.m.
63	2.	327	273	209
0.5	4.	327	273	209
	2.	427	364	291
71	4.	427	364	291
	5. 2. 4.		364	291
	2.	609	555	500
		664	591	536
80	5 .	755	682	618
	8.	836	745	682
	2.	673	600	536
90	4.	727	645	573
	5 .	836	736	664
	8.	918	809	727
100	2.	936	836	745
	4.	1009	900	809
	5 .	1155	1027	927
	8.	1273	1127	1018
	2.	1355	1209	1091
112	4.	1455	1300	1173
112	5 .	1673	1491	1345
	8.	1836	1636	1482
	2.	1964	1727	1536
132	4.	2118	1855	1655
	5 .	2427	2127	1891
	8.	2673	2336	2082
160	2.	2545	2218	1973
	4.	2727	2391	2118
	5 .	3127	2736	2427
	8.	3500	3100	2782
	2.	3573	3182	2864
180	4.	3855	3427	3082
100				

A tabela da esquerda mostra as Forças Radiais Permissíveis em Newtons, considerando a força axial zero e rolamentos de esferas. Caso exista a necessidade de forças radiais maiores, o motor deve ser adquirido com rolamentos de rolos. Os valores são baseados em condições normais em 60Hz e calculados em 20.000 horas para motores 2 polos e 40.000 horas para 4, 6 e 8 polos. Considerar +10% para operação em 50Hz.

A tabela da direita mostra as Forças Axiais Permissíveis em Newtons, considerando a força radial zero e rolamentos de esferas. Caso exista a necessidade de forças axiais maiores, o motor deve ser adquirido com rolamentos de contato angular. Os valores são baseados em condições normais em 60Hz e calculados em 20.000 horas para motores 2 polos e 40.000 horas para 4, 6 e 8 polos. F_{pressão} é calculado para rolamento bloqueado no lado do acoplamento. Considerar +10% para operação em 50Hz.

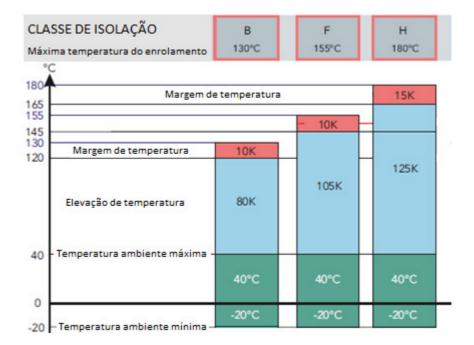
Força Axial Máxima [N]									
		B3	B3	V1	V1				
Carcaça	Polos	Europe	Eugen	Para cima	Para baixo				
	2.	227	227	236	209				
63	4.	255	255	273	236				
	2	245	245	264	232				
71	4.	318	318	355	291				
	5.	400	400	418	382				
		345	345	364	327				
	2.	427	427	445	409				
80	<u>4.</u>	536	536	564	509				
		564	564	591	541				
	8.								
	2.	400	400	427	373				
90	4.	500	500	545	464				
	- 5.	564	564	618	418				
	8.	582	582	636	527				
	2.	555	555	609	518				
100	4.	682	682	764	645				
	5.	800	800	882	745				
	8.	814	814	882	768				
	2.	1109	1109	1182	1064				
112	4.	1273	1309	1382	1245				
112	5.	1500	1500	1582	1436				
	8.	1618	1618	1709	1555				
	2.	1364	1364	1473	1300				
132	4.	1618	1618	1791	1464				
	6.	1655	1655	1818	1509				
	8.	1745	1745	1909	1600				
	2.	1500	1500	1773	1227				
	4.	1909	1909	2245	1564				
160	<u>6</u>	2227	2227	2545	1864				
	8.	2409	2409	2773	2009				
	2	1909	1909	2227	1564				
	Ā	2364	2364	2909	1818				
180	5.	2636	2636	3191	2073				
		2882	2882	3436	2318				
	8.	2182	2182	2673	1673				
	4	2836	2836	3500	2173				
200			3164	3955	2373				
	- 5.	3164							
	8.	3591	3591	4373	2809				
	2	2473	2473	3109	1836				
225	4.	3164	3164	3973	2355				
	- 5.	3536	3536	4582	2564				
	8.	3936	3936	4845	3027				
	2.	2818	2818	3582	2055				
250	4.	3545	3545	4545	2545				
	5.	4045	4045	5064	2936				
	8.	4527	4527	5800	3255				
	2.	4818	2818	5909	1909				
280	4.	5727	4000	7091	2727				
230	6.	6091	3909	7182	2636				
	8.	6455	4564	8273	3200				
	2.	5364	3455	7273	1818				
315	4.	6455	4636	9727	2864				
	5.	6909	5273	10727	3182				
	8.	7364	5727	11364	4000				
	2	5545	1682	12727	727				
	- Â	8909	3545	16636	2273				
355	5.	9545	4273	18818	3182				
555	8.	11364	5455	19545	3273				
	-	11304	5455	15545	32/3				

CONEXÃO ELÉTRICA

Para o dimensionamento dos cabos de alimentação e dispositivos de proteção e operação, devem ser levados em consideração a corrente de operação (corrente nominal e com fator de serviço), máxima queda de tensão, corrente de partida, etc., conforme as normas vigentes para instalação de máquinas elétricas.

EQUIVALÊNCIA AWG x SÉRIE MÉTRICA

AWG	14	12	10	8	6	4	2	1/0	2/0	3/0	4/0	250	300	350	400	500
mm²	1,5	2,5	4	6	10	16	25	50	70	70	95	120	120	150	185	240


TESTE DA RESISTÊNCIA DE ISOLAMENTO

Medir a resistência de isolamento, através de um Megohmetro, conforme NBR5383, antes de pôr o motor em serviço e/ou quando houver qualquer indício de umidade na bobinagem.

Recomendação Regal Beloit

Se a resistência de isolamento for inferior a $50M\Omega$, o enrolamento deve ser seco seguindo o método abaixo:

- Aquecer em estufa à temperatura de 105°C. Nesta temperatura, motores até 30 CV devem permanecer por um período mínimo de 2 horas; motores acima desta potência devem permanecer no mínimo 4 horas. Observe se a resistência de isolamento do enrolamento do estator permanece constante e dentro dos valores mínimos recomendados, caso contrário, proceda com nova impregnação do estator.

ATERRAMENTO

Para maior proteção do usuário, o motor, assim como todo equipamento elétrico, deve possuir uma conexão que o ligue a terra. Os motores **Marathon** dispõem de terminal próprio para a conexão no interior da caixa de borne ou na base (pé ou flange). Estes pontos de ligação devem oferecer ótimo contato e devem ser mantidos limpos e bem conectados.

REDE DE ALIMENTAÇÃO

O fornecimento de tensão e frequência da rede de alimentação deve estar em concordância com os dados fornecidos na placa de identificação do motor. Desvios contínuos de tensão e frequência de +/- 5% e +/- 2% respectivamente são permitidos sem a necessidade de redução da potência mecânica na ponta de eixo. Desvios temporários de tensão e frequência de +/- 10% e +/- 5% respectivamente são permitidos conforme NBR 17094-1. As conexões devem estar de acordo com o diagrama de ligação fornecido na placa de identificação do motor. Conectar o condutor de aterramento ao terminal com a identificação de terra. Favor ver a tabela

abaixo para o torque de aperto dos parafusos das conexões elétricas.

Rosca		M4	M5	M6	M8	M10	M12	M16
Torque de aperto	min	0.8	1.8	2.7	5.5	9	14	27
[Nm]	max	1.2	2.5	4	8	13	20	40

Os valores de torque acima são válidos a menos que valores diferentes sejam informados.

PROTECÃO ELÉTRICA

Sistemas de proteção elétrica devem ser implementados, tais como fusíveis, disjuntores, relés térmicos ou de sobrecorrente, proteção contra falta de fase, etc.

Motores fornecidos com sensores de temperatura, tais como protetores térmicos bimetálicos, termistores ou RTDs, devem ter estes sensores colocados em operação.

Motores equipados com sensores de temperatura podem religar a qualquer momento, podendo causar acidente. Desligar a alimentação antes de se aproximar do motor.

VERIFICAÇÕES PRELIMINARES

Antes de colocar um motor elétrico em operação, é de vital importância observar as orientações a seguir:

- Observar se o rotor gira livremente e se os calços utilizados para o transporte, se existentes, foram removidos.
- Analisar se o esquema de ligação executado está de acordo com o indicado na placa de identificação do motor para a tensão desejada.
- Verificar se os parafusos, porcas, conexões dos terminais e fio de aterramento estão devidamente apertados.
- Identificar o sentido de giro desejado acionando o motor desacoplado. Caso a inversão do sentido de giro seja necessária, inverta duas fases quaisquer.
- Com o sentido de giro correto, acoplar o motor à carga fixando-o de maneira adequada à base ou ao equipamento.
- O isolamento das conexões deve ser feito com fita isolante compatível com a classe térmica do motor.

ATENÇÃO: retirar a chaveta do eixo ao acionar o motor desacoplado. CUIDADO:

- Com o motor parado, pode existir tensão no interior da caixa de bornes, tanto para as resistências de aquecimento quanto para o enrolamento
- Conexão feita de maneira incorreta poderá provocar a queima do motor.
- A variação aceitável de tensão e frequência deve ser observada conforme NBR 17094-1.

ACIONAMENTO INICIAL

Acionar o motor acoplado à carga, utilizando o sistema de partida escolhido mantendo a vigilância mínima de uma hora, observando principalmente os seguintes itens:

- Ruídos anormais
- Aquecimento excessivo
- Comparação da corrente absorvida da rede com a corrente nominal do motor indicada na placa de identificação. A corrente absorvida não deverá exceder a corrente nominal.
- Caso o motor não parta de maneira suave desligue-o imediatamente e verifique a montagem e as ligações
- Em caso de excessiva vibração, verificar o alinhamento e os parafusos de fixação.

ROLAMENTOS E MANCAIS

Instalando novos rolamentos

Sob as condições de operação normal, com as seguintes velocidades e temperaturas de refrigeração, os rolamentos devem ser substituídos nos intervalos especificados abaixo.

	25℃	40 <i>°</i> C
≤ 1800 r.p.m.	Aprox. 40.000 horas	Aprox. 20.000 horas
3600 r.p.m.	Aprox. 20.000 horas	Aprox. 10.000 horas

Independentemente ao número de horas, os rolamentos blindados devem ser trocados a cada cinco anos devido ao envelhecimento do lubrificante. Para motores operando sob condições especiais, tais como motores montados na vertical, elevadas vibrações, mudanças repentinas de carga, operação com reversões frequentes, elevadas temperaturas, etc., os rolamentos devem ser trocadas em intervalos consideravelmente menores do que os citados acima.

Para a troca dos rolamentos, desmontar o motor. Retirar os rolamentos utilizando um dispositivo adequado para esta função.

Nenhum elemento de vedação deve ser recolocado quando da troca dos rolamentos. Todos devem ser igualmente trocados.

Sistema de relubrificação

Nos motores providos com sistema de relubrificação, levar em consideração as informações que constam da etiqueta de lubrificação do motor.

Os rolamentos devem ser relubrificados com o motor parado!

COMPATIBILIDADE DE GRAXAS

As graxas utilizadas pela **Regal** são a Exxon Mobyl Polyrex EM ou Chevron SRI-2, que são graxas com base de poliureia, especialmente desenvolvida para mancais de motores elétricos.

Obs.:

- Não é recomendada a mistura de graxas a menos que a compatibilidade tenha sido verificada.
- A tabela de intervalos de relubrificação deste manual não é válida para outro tipo de graxa.

RELUBRIFICAÇÃO LINHA TFVE IP55

CARCAÇA	Polos	Volume	Intervalo
CARCAÇA	Folos	Gramas	Horas
180-250	2	25	2000
160-230	4-6-8	25	4000
200 255	2	50	2000
280-355	4-6-8	50	4000

GRAXA: POLIREX EM ou equivalente

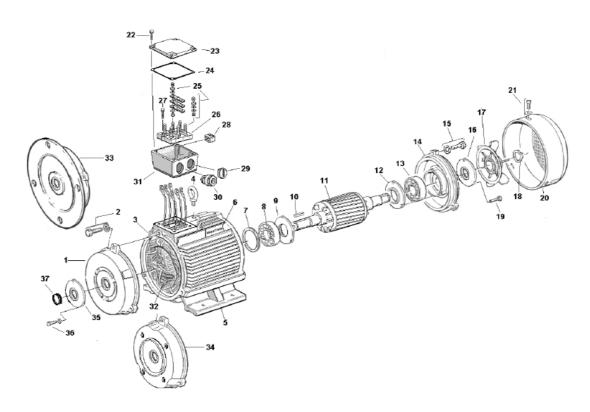
RELUBRIFICAÇÃO LINHA ODP IP23

RPM	CARCAÇA	CARCAÇA	CICLO DE SERVIÇO		
	NEMA	IEC	Volume	Inervalo	
			Gramas	Horas	
3600	360 - 5800	225-355	30	50 Dias (1200 horas)	
	360	225	30	130 Dias (3120 horas)	
1800	400 - 440	250-280	30	90 Dias (2160 horas)	
	5000 - 5800	315-355	30	70 Dias (1680 horas)	
1200	360 – 440	225-280	30	130 Dias (3120 horas)	
	5000 - 5800	315-355	30	90 Dias (2160 horas)	

MANUTENÇÃO PREVENTIVA

Recomenda-se inspeção periódica dos motores em operação, verificando:

- Temperatura de operação.
- · Ruídos anormais.
- Vibrações anormais.
- Temperatura dos mancais.
- Corrente com carga (deve ser igual ou inferior à corrente nominal).
- Condições de lubrificação dos mancais.


No caso da constatação de alguma anormalidade em algum dos itens inspecionados, o motor deverá ser desligado para investigação e correção, se necessário, por área de manutenção qualificada ou **Assistente Técnico Autorizado Marathon**.

PEÇAS DE REPOSIÇÃO LINHA TFVE IP55

Quando peças de reposição forem necessárias, procurar Distribuidores de Peças Credenciados e Assistentes Técnicos Autorizados em todo Brasil. Utilizar sempre peças originais Marathon. Para solicitar peças de reposição e necessário ter os dados de placa do motor.

1	Tampa LA	19	Parafuso de fixação do flange externo do
			rolamento
2	Parafuso de fixação tampa LA	20	Calota
3	Carcaça	21	Parafuso de fixação da calota
4	Olhal de suspensão	22	Parafuso de fixação da tampa de bornes
5	Pé do motor	23	Tampa de bornes
6	Placa de identificação	24	Borracha de vedação entre tampa e
			caixa de bornes
7	Mola de pré-carga dos rolamentos	25	Porcas de fixação das conexões na
			placa de bornes
8	Rolamento LA	26	Placa de bornes
9	Flange interno LA – a partir da carcaça 180	27	Parafuso de fixação da placa de bornes
10	Chaveta	28	Conector dos termistores PTC
11	Gaiola do rotor	29	Tampão da caixa de bornes
12	Flange interno LOA – a partir da carcaça 180	30	Prensa cabos
13	Rolamento LOA	31	Caixa de bornes
14	Tampa LOA	32	Enrolamentos do estator
15	Parafuso de fixação tampa LOA	33	Flange B5
16	Flange externo do rolamento a partir da	34	Flange B14
	carcaça 180		
17	Ventilador	35	Flange externo do rolamento
18	Anel de fixação do ventilador no eixo	36	Parafuso de fixação do flange externo do
			rolamento

Peças de reposição para a linha ODP IP23, favor contatar a fábrica.

Motores com freio acoplado

Construção e princípio de funcionamento do freio

Freio mecânico normalmente fechado, acionado por molas e com abertura efetuada através de bobina eletromagnética, com alimentação direta em 205VDC ou através de ponte retificadora com entrada em 220VAC.

O conjunto de frenagem é composto por um sistema monodisco com duas lonas de freio, apresentando elevada confiabilidade, longa vida útil e simples manutenção.

Com motor energizado, também é alimentada a bobina do eletroímã, fazendo com que o disco de freio e o eixo do motor fiquem livres. A frenagem ocorre com o desligamento conjunto do motor e da bobina do eletroímã, permitindo a atuação das molas e consequente compressão das lonas entre o platô e a flange, bloqueando o eixo do motor.

Métodos de frenagem

Frenagem Normal – A frenagem normal ocorre quando somente é interrompida a alimentação de 220 VAC no conjunto ponte retificador e bobina, conforme a figura 1.

Frenagem Rápida - A frenagem rápida ocorre com a interrupção da alimentação 220 VAC juntamente com a da corrente contínua através de um contato auxiliar, conforme a figura 2.

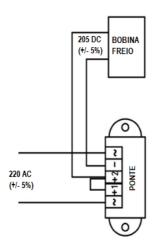


Figura 1 – Conexão para frenagem normal

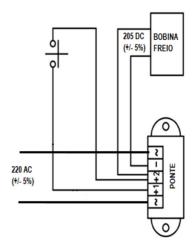
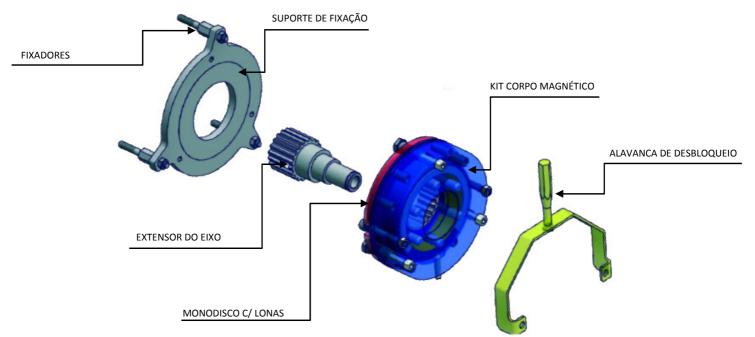


Figura 2 – Conexão para frenagem rápida

Ajustes do freio

O motofreio Marathon já sai de fábrica com o ajuste recomendado para o entreferro (air gap) entre o disco de freio e o platô.

O entreferro (air gap) deve seguir a tabela abaixo, sendo que quando o entreferro atingir o valor máximo, ajustes devem ser feitos para regularizá-lo.


Carcaça	80	90	100-112	132	160
Air gap mín. (mm)	0.2	0.2	0.3	0.3	0.4
Air gap máx. (mm)	0.5	0.5	0.7	0.8	1.0

Características de montagem

STM .

Regal Beloit do Brasil Ltda Trav. Vitor Emanuel, 2889 Bairro Pedancino CEP 95047-610 Caixa Postal 34 Caxias do Sul RS Brasil

Tel: 54.32249600 www.regalbeloit.com.br

REGAL